A Volcanic Aura: Observing the Magnitude and Impact of Global SO₂ Emissions S.A. Carn¹, V. Fioletov², C. McLinden², N.A. Krotkov³, C. Li³, S. Mairet¹ 1. Michigan Tech; 2. Environment & Climate Change Canada; 3. NASA GSFC #### UV satellite remote sensing of volcanic SO₂ 1978-2005 Total Ozone Mapping Spectrometer (TOMS) 1995-2003 Global Ozone Monitoring Experiment (GOME) 2004-Ozone Monitoring Instrument (OMI) 2006-GOME-2 2012- & 2017-Ozone Mapping and Profiler Suite (OMPS) 2015-DSCOVR/ EPIC 2018-Sentinel 5P TROPOMI #### Explosive volcanic SO₂ emissions (1978 – present) #### New global volcanic SO₂ emissions inventory #### A time-averaged inventory of subaerial volcanic sulfur emissions [Andres & Kasgnoc, JGR, 1998] R.J. Andres and A.D. Kasgnoc Institute of Northern Engineering, University of Alaska Fairbanks - Volcanic degassing 'source term' in atmospheric chemistry and climate models - Climate impact of tropospheric volcanic emissions (sulfate aerosol) - Estimation of global fluxes of other volcanic gases (e.g., CO₂) and trace metals (e.g., Hg) ## SCIENTIFIC REPORTS OPEN A decade of global volcanic SO₂ emissions measured from space [Carn et al., 2017] [Fioletov et al., 2016] S. A. Carn¹, V. E. Fioletov², C. A. McLinden², C. Li^{3,4} & N. A. Krotkov⁴ #### Volcanic SO₂ sources in Indonesia - Globally, 90-100 volcanic SO₂ sources quantified (many for the first time) - Total SO₂ flux of 23+/-2 Tg/yr (~63 kt/day) - Volcanic emissions dominate in many regions Fioletov et al., 2016 Carn et al., 2017 #### Improved estimates of volcanic CO₂ emissions - CO₂/SO₂ ratios measured at many of the strongest SO₂ sources - ~50% of SO₂ sources still lack CO₂ data efforts underway to address this #### Trends in tropospheric volcanic SO₂ emissions - Aura has captured volcanoes at various stages in their 'life-cycles' - ~30% of volcanic SO₂ sources show significant +/- trends in emissions - ~80% of sources also erupted during the decade #### Trends in SO₂ emissions at erupting volcanoes #### Identifying 'pre-eruptive' SO₂ emissions #### Eruption of Ulawun (Papua New Guinea) - June 26, 2019 NASA aims to sample volcanic eruption clouds – need advance warning ### Population exposure to volcanic SO₂ - Satellite & census data permit estimation of population exposure to SO₂ pollution (e.g., *Li et al.*, 2017) - Exposure to volcanic SO₂ (and other volcanic emissions) is not well constrained and can be a significant, chronic hazard - Goal: methodology for producing first volcanic gas 'hazard maps' #### Volcanic air pollution at Masaya (Nicaragua) ### Summary